Molecular Analyses of Novel Methanotrophic Communities in Forest Soil That Oxidize Atmospheric Methane

Author:

Henckel Thilo1,Jäckel Udo1,Schnell Sylvia1,Conrad Ralf1

Affiliation:

1. Max-Planck-Institut für terrestrische Mikrobiologie, Karl-von-Frisch-Strasse, 35043 Marburg, Germany

Abstract

ABSTRACT Forest and other upland soils are important sinks for atmospheric CH 4 , consuming 20 to 60 Tg of CH 4 per year. Consumption of atmospheric CH 4 by soil is a microbiological process. However, little is known about the methanotrophic bacterial community in forest soils. We measured vertical profiles of atmospheric CH 4 oxidation rates in a German forest soil and characterized the methanotrophic populations by PCR and denaturing gradient gel electrophoresis (DGGE) with primer sets targeting the pmoA gene, coding for the α subunit of the particulate methane monooxygenase, and the small-subunit rRNA gene (SSU rDNA) of all life. The forest soil was a sink for atmospheric CH 4 in situ and in vitro at all times. In winter, atmospheric CH 4 was oxidized in a well-defined subsurface soil layer (6 to 14 cm deep), whereas in summer, the complete soil core was active (0 cm to 26 cm deep). The content of total extractable DNA was about 10-fold higher in summer than in winter. It decreased with soil depth (0 to 28 cm deep) from about 40 to 1 μg DNA per g (dry weight) of soil. The PCR product concentration of SSU rDNA of all life was constant both in winter and in summer. However, the PCR product concentration of pmoA changed with depth and season. pmoA was detected only in soil layers with active CH 4 oxidation, i.e., 6 to 16 cm deep in winter and throughout the soil core in summer. The same methanotrophic populations were present in winter and summer. Layers with high CH 4 consumption rates also exhibited more bands of pmoA in DGGE, indicating that high CH 4 oxidation activity was positively correlated with the number of methanotrophic populations present. The pmoA sequences derived from excised DGGE bands were only distantly related to those of known methanotrophs, indicating the existence of unknown methanotrophs involved in atmospheric CH 4 consumption.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3