Characterization of Isolates of Methicillin-Resistant Staphylococcus aureus from Hong Kong by Phage Typing, Pulsed-Field Gel Electrophoresis, and Fluorescent Amplified-Fragment Length Polymorphism Analysis

Author:

Ip M.1,Lyon D. J.1,Chio F.1,Enright M. C.2,Cheng A. F.1

Affiliation:

1. Department of Microbiology, The Chinese University of Hong Kong, Shatin, Hong Kong

2. Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom

Abstract

ABSTRACT The genetic relatedness of 127 methicillin-resistant Staphylococcus aureus (MRSA) isolates, belonging to five major types as identified by pulsed-field gel electrophoresis (PFGE) and antibiotic resistance profiles, was examined further using phage typing and fluorescent amplified fragment length polymorphism (FAFLP). The MRSA isolates were recovered from patients at the Prince of Wales Hospital (PWH), Hong Kong, over a 13-year period, 1988 to 2000. These strains were also compared with representatives of the well-described MRSA international clones and with epidemic MRSA strains (eMRSA) 1 to 16 from the United Kingdom. Phage typing distinguished two major “clones” at this hospital: all of the phage type 1 (PT1) isolates belonged to PFGE types A, C, D, and E, while most of the PT2 isolates were associated with PFGE type B, which exhibited a unique antibiotic resistance profile. MRSA isolates belonging to PFGE subtype A2 were indistinguishable from the British eMRSA-1, while isolates of PFGE type B were closely related to eMRSA-9 by PFGE. Based on FAFLP, all five predominant PFGE types at the PWH belonged to one group and fell into the same cluster as eMRSA-1, -4, -7, -9, and -11 isolates. Multilocus sequence typing and staphylococcal cassette chromosome mec typing classified representatives of our MRSA isolates as members of the same clone (ST239-MRSA-III). Thus, the predominant MRSA isolates frin the PWH in the last decade are closely related to early United Kingdom eMRSA clones 1, 4, and 11 and are members of a lineage that includes the Brazilian MRSA clone.

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3