Use of Turbidimetric Growth Curves for Early Determination of Antifungal Drug Resistance of Filamentous Fungi

Author:

Meletiadis Joseph12,te Dorsthorst Debbie T. A.132,Verweij Paul E.12

Affiliation:

1. Department of Medical Microbiology, University Medical Center Nijmegen

2. Nijmegen University Center for Infectious Diseases, Nijmegen, The Netherlands

3. Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital

Abstract

ABSTRACT A previously described microbroth kinetic system (J. Meletiadis, J. F. Meis, J. W. Mouton, and P. E. Verweij, J. Clin. Microbiol. 39: 478-484, 2001) based on continuous monitoring of changes in the optical density of fungal growth was used to describe turbidimetric growth curves of different filamentous fungi in the presence of increasing concentrations of antifungal drugs. Therefore, 24 clinical mold isolates, including Rhizopus oryzae , Aspergillus fumigatus , Aspergillus flavus , and Scedosporium prolificans , were tested against itraconazole, terbinafine, and amphotericin B according to NCCLS guidelines. Among various parameters of the growth curves, the duration of the lag phase was strongly affected by the presence of antifungal drugs. Exposure to increasing drug concentrations resulted in prolonged lag phases of the turbidimetric growth curves. The lag phases of the growth curves at drug concentrations which resulted in more than 50% growth (for itraconazole and terbinafine) and more than 75% growth (for amphotericin B) after 24 h of incubation for R. oryzae , 48 h for Aspergillus spp., and 72 h for S. prolificans were 4 h longer than the lag phases of the growth curves at the corresponding drug-free growth controls which varied from 4.4 h for R. oryzae , 6.5 h for A. flavus , 7.9 h for A. fumigatus , and 11.6 h for S. prolificans . The duration of the lag phases showed small experimental and interstrain variability, with differences of less than 2 h in most of the cases. Using this system, itraconazole and terbinafine resistance (presence of >50% growth) as well as amphotericin B resistance (presence of >75% growth) was determined within incubation periods of 5.0 to 7.7 h for R. oryzae (for amphotericin B resistance incubation for up to 12 h was required), 8.8 to 11.4 h for A. fumigatus , 6.7 to 8.5 h for A. flavus , and 13 to 15.6 h for S. prolificans while awaiting formal MIC determination by the NCCLS reference method.

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3