The Zymomonas mobilis glf, zwf, edd, and glk genes form an operon: localization of the promoter and identification of a conserved sequence in the regulatory region

Author:

Barnell W O1,Liu J1,Hesman T L1,O'Neill M C1,Conway T1

Affiliation:

1. School of Biological Sciences, University of Nebraska, Lincoln 68588-0118.

Abstract

The Zymomonas mobilis genes that encode the glucose-facilitated diffusion transporter (glf), glucose-6-phosphate dehydrogenase (zwf), 6-phosphogluconate dehydratase (edd), and glucokinase (glk) are clustered on the genome. The data presented here firmly establish that the glf, zwf, edd, and glk genes form an operon, in that order. The four genes of the operon are cotranscribed on a 6.14-kb mRNA. The site of transcriptional initiation for the polycistronic message was mapped by primer extension and nuclease S1 protection analysis. The glf operon promoter region showed significant homology to other highly expressed Z. mobilis promoters, but not to consensus promoters from other bacteria. The highly expressed Z. mobilis promoter set contains two independent, overlapping, conserved sequences that extend from approximately bp -100 to +15 with respect to the transcriptional start sites. Expression of the glf operon was shown to be subject to carbon source-dependent regulation. The mRNA level was threefold higher in cells grown on fructose than in cells grown on glucose. This increase was not the result of differential mRNA processing when cells were grown on the different carbon sources, nor was it the result of differential transcript stability. Degradation of the 6.14-kb glf operon mRNA was biphasic, with initial half-lives of 11.5 min in fructose-grown cells and 12.0 min in glucose-grown cells. Thus, the higher level of glf operon mRNA in fructose-grown cells is the result of an increased rate of transcription. The importance of increasing glf expression in cells growing on fructose is discussed.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3