Diversity and Seasonality of Bioluminescent Vibrio cholerae Populations in Chesapeake Bay

Author:

Zo Young-Gun12,Chokesajjawatee Nipa13,Grim Christopher12,Arakawa Eiji4,Watanabe Haruo4,Colwell Rita R.12

Affiliation:

1. Center of Marine Biotechnology, University of Maryland Biotechnology Institute, 701 E. Pratt St., Baltimore, Maryland 21202

2. Center of Bioinformatics and Computational Biology, University of Maryland Institute of Advanced Computer Studies, University of Maryland—College Park, College Park, Maryland 20742

3. National Center for Genetic Engineering and Biotechnology, 113 Phahonyothin Rd., Klong 1, Klong Luang, Pathumthani 12120, Thailand

4. Department of Bacteriology, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku-ku, Tokyo 162-8640, Japan

Abstract

ABSTRACT Association of luminescence with phenotypic and genotypic traits and with environmental parameters was determined for 278 strains of Vibrio cholerae isolated from the Chesapeake Bay during 1998 to 2000. Three clusters of luminescent strains (A, B, and C) and two nonluminescent clusters (X and Y) were identified among 180 clonal types. V. cholerae O1 strains isolated during pandemics and endemic cholera in the Ganges Delta were related to cluster Y. Heat-stable enterotoxin (encoded by stn ) and the membrane protein associated with bile resistance (encoded by ompU ) were found to be linked to luminescence in strains of cluster A. Succession from nonluminescent to luminescent populations of V. cholerae occurred during spring to midsummer. Occurrence of cluster A strains in water with neutral pH was contrasted with that of cluster Y strains in water with a pH of >8. Cluster A was found to be associated with a specific calanoid population cooccurring with cyclopoids. Cluster B was related to cluster Y, with its maximal prevalence at pH 8. Occurrence of cluster B strains was more frequent with warmer water temperatures and negatively correlated with maturity of the copepod community. It is concluded that each cluster of luminescent V. cholerae strains occupies a distinct ecological niche. Since the dynamics of these niche-specific subpopulations are associated with zooplankton community composition, the ecology of luminescent V. cholerae is concluded to be related to its interaction with copepods and related crustacean species.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3