Protein phosphorylation and allosteric control of inducer exclusion and catabolite repression by the bacterial phosphoenolpyruvate: sugar phosphotransferase system

Author:

Saier M H

Abstract

The bacterial phosphotransferase system (PTS) functions in a variety of regulatory capacities. One of the best characterized of these is the process by which the PTS regulates inducer uptake and catabolite repression. Early genetic and physiological evidence supported a mechanism whereby the phosphorylation state of an enzyme of the PTS, the enzyme III specific for glucose (IIIGlc), allosterically inhibits the activities of a number of permeases and catabolic enzymes, the lactose, galactose, melibiose, and maltose permeases, as well as glycerol kinase. Extensive biochemical evidence now supports this model. Evidence is also available showing that substrate binding to those target proteins enhances their affinities for IIIGlc. In the case of the lactose permease, this positively cooperative interaction represents a well documented example of transmembrane signaling, demonstrated both in vivo and in vitro. Although the PTS-mediated regulation of cyclic AMP synthesis (catabolite repression) is not as well defined from a mechanistic standpoint, a model involving allosteric activation of adenylate cyclase by phospho-IIIGlc, together with the evidence supporting it, is presented. These regulatory mechanisms may prove to be operative in gram-positive as well as gram-negative bacteria, but the former organisms may have introduced variations on the theme by covalently attaching IIIGlc-like moieties to some of the target permeases and catabolic enzymes. It appears likely that the general process of PTS-catalyzed protein phosphorylation-dephosphorylation will prove to be important to the regulation of numerous bacterial physiological processes, including chemotaxis, intermediary metabolism, gene transcription, and virulence.

Publisher

American Society for Microbiology

Subject

Applied Microbiology and Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3