Diminished Exoproteome of Frankia spp. in Culture and Symbiosis

Author:

Mastronunzio J. E.1,Huang Y.1,Benson D. R.1

Affiliation:

1. Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Rd., Unit 3125, Storrs, Connecticut 06269

Abstract

ABSTRACT Frankia species are the most geographically widespread gram-positive plant symbionts, carrying out N 2 fixation in root nodules of trees and woody shrubs called actinorhizal plants. Taking advantage of the sequencing of three Frankia genomes, proteomics techniques were used to investigate the population of extracellular proteins (the exoproteome) from Frankia , some of which potentially mediate host-microbe interactions. Initial two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of culture supernatants indicated that cytoplasmic proteins appeared in supernatants as cells aged, likely because older hyphae lyse in this slow-growing filamentous actinomycete. Using liquid chromatography coupled to tandem mass spectrometry to identify peptides, 38 proteins were identified in the culture supernatant of Frankia sp. strain CcI3, but only three had predicted export signal peptides. In symbiotic cells, 42 signal peptide-containing proteins were detected from strain CcI3 in Casuarina cunninghamiana and Casuarina glauca root nodules, while 73 and 53 putative secreted proteins containing signal peptides were identified from Frankia strains in field-collected root nodules of Alnus incana and Elaeagnus angustifolia , respectively. Solute-binding proteins were the most commonly identified secreted proteins in symbiosis, particularly those predicted to bind branched-chain amino acids and peptides. These direct proteomics results complement a previous bioinformatics study that predicted few secreted hydrolytic enzymes in the Frankia proteome and provide direct evidence that the symbiosis succeeds partly, if not largely, because of a benign relationship.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Reference39 articles.

1. Alloisio, N., S. Felix, J. Marechal, P. Pujic, Z. Rouy, D. Vallenet, C. Medigue, and P. Normand. 2007. Frankia alni proteome under nitrogen-fixing and nitrogen-replete conditions. Physiol. Plant.130:450-453.

2. Bagnarol, E., J. Popovici, N. Alloisio, J. Marechal, P. Pujic, P. Normand, and M. P. Fernandez. 2007. Differential Frankia protein patterns induced by phenolic extracts from Myricaceae seeds. Physiol. Plant.130:380-390.

3. Improved Prediction of Signal Peptides: SignalP 3.0

4. Benson, D. R., and N. A. Schultz. 1990. Physiology and biochemistry of Frankia in culture, p. 107-127. In C. R. Schwintzer and J. D. Tjepkema (ed.), The biology of Frankia and actinorhizal plants. Academic Press, Inc., New York, NY.

5. Biology of Frankia strains, actinomycete symbionts of actinorhizal plants

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3