Mechanism of autocrine stimulation in hematopoietic cells producing interleukin-3 after retrovirus-mediated gene transfer.

Author:

Browder T M,Abrams J S,Wong P M,Nienhuis A W

Abstract

Endogenous expression of the interleukin-3 (IL3) gene introduced with a retrovirus vector renders hematopoietic cells autonomous of exogenous growth factor. To investigate the mechanism of autocrine stimulation, 25 clones were isolated after retrovirus transduction of IL3 into 32D-cl23 or FDC-P1 cells. Medium conditioned by these autonomous IL3-producing clones supported the growth of factor-dependent 32D cells. Although there was a severalfold variation in the amount of IL3 secreted (some clones secreted barely detectable levels), the doubling time of each clone in the absence of added IL3 was identical to that of the parental cell line maximally stimulated by exogenous IL3. Concentrated monoclonal and polyclonal antibodies, both highly effective in neutralizing exogenous IL3, were assayed for ability to inhibit autocrine growth. Minimal inhibitory effects were observed only on washed autocrine clones secreting low levels of IL3. To test the activity of cytoplasmically synthesized IL3, the nucleotides encoding the signal sequence of IL3 were deleted and replaced with an in-frame ATG in the context of a consensus translation initiation sequence. Ten 32D clones expressing this restructured IL3 genome were obtained. Despite the presence of biologically active IL3 in cell lysates, all clones remained dependent on exogenous IL3, with the same dose-response as that found for 32D cells. Our data are most compatible with a mechanism whereby endogenously produced IL3 interacts with its receptor prior to surface display.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3