A block in mammalian splicing occurring after formation of large complexes containing U1, U2, U4, U5, and U6 small nuclear ribonucleoproteins.

Author:

Agris C H,Nemeroff M E,Krug R M

Abstract

The assembly of mammalian pre-mRNAs into large 50S to 60S complexes, or spliceosomes, containing small nuclear ribonucleoproteins (snRNPs) leads to the production of splicing intermediates, 5' exon and lariat-3' exon, and the subsequent production of spliced products. Influenza virus NS1 mRNA, which encodes a virus-specific protein, is spliced in infected cells to form another viral mRNA (the NS2 mRNA), such that the ratio of unspliced to spliced mRNA is 10 to 1. NS1 mRNA was not detectably spliced in vitro with nuclear extracts from uninfected HeLa cells. Surprisingly, despite the almost total absence of splicing intermediates in the in vitro reaction, NS1 mRNA very efficiently formed ATP-dependent 55S complexes. The formation of 55S complexes with NS1 mRNA was compared with that obtained with an adenovirus pre-mRNA (pKT1 transcript) by using partially purified splicing fractions that restricted the splicing of the pKT1 transcript to the production of splicing intermediates. At RNA precursor levels that were considerably below saturation, approximately 10-fold more of the input NS1 mRNA than of the input pKT1 transcript formed 55S complexes at all time points examined. The pKT1 55S complexes contained splicing intermediates, whereas the NS1 55S complexes contained only precursor NS1 mRNA. Biotin-avidin affinity chromatography showed that the 55S complexes formed with either NS1 mRNA or the pKT1 transcript contained the U1, U2, U4, U5, and U6 snRNPs. Consequently, the formation of 55S complexes containing these five snRNPs was not sufficient for the catalysis of the first step of splicing, indicating that some additional step(s) needs to occur subsequent to this binding. These results indicate that the 5' splice site, 3' and branch point of NS1 and mRNA were capable of interacting with the five snRNPs to form 55S complexes, but apparently some other sequence element(s) in NS1 mRNA blocked the resolution of the 55S complexes that leads to the catalysis of splicing. On the basis of our results, we suggest mechanisms by which the splicing of NS1 is controlled in infected cells.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3