Lack of Adaptation of Chimeric GB Virus B/Hepatitis C Virus in the Marmoset Model: Possible Effects of Bottleneck

Author:

Weatherford Trudie12,Chavez Deborah1,Brasky Kathleen M.3,Lemon Stanley M.4,Martin Annette5,Lanford Robert E.132

Affiliation:

1. Department of Virology and Immunology, Southwest Foundation for Biomedical Research

2. Department of Microbiology and Immunology, University of Texas Health Science Center, 7703 Floyd Curl Dr., San Antonio, Texas 78229

3. Southwest National Primate Research Center, 7620 N.W. Loop 410, San Antonio, Texas 78227

4. Institute for Human Infections and Immunity and Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555

5. Unité de Génétique Moléculaire des Virus à ARN, URA CNRS 3015, Institut Pasteur, 75724 Paris Cedex 15, France

Abstract

ABSTRACT Approximately 3% of the world population is chronically infected with hepatitis C virus (HCV). GB virus B (GBV-B), a surrogate model for HCV, causes hepatitis in tamarins and is the virus phylogenetically most closely related to HCV. Previously we described a chimeric GBV-B containing an HCV insert from the 5′ noncoding region (NCR) that was adapted for efficient replication in tamarins ( Saguinus species). We have also demonstrated that wild-type (WT) GBV-B rapidly adapts for efficient replication in a closely related species, the common marmoset ( Callithrix jacchus ). Here, we demonstrate that the chimeric virus failed to adapt during serial passage in marmosets. The chimeric virus was passaged four times through 24 marmosets. During passage, two marmoset phenotypes were observed: susceptible and partially resistant. Although appearing to adapt in a resistant animal during a prolonged and gradual increase in viremia, the chimeric GBV-B failed to replicate efficiently upon passage to a naïve marmoset. The resistance was specific to the chimeric virus, as the chimeric virus-resistant animals were susceptible to marmoset-adapted WT virus during rechallenge studies. Three isolates of the chimeric virus were sequenced, and 20 nucleotide changes were observed, including eight amino acid changes. Three unique changes were observed in the 5′ NCR chimeric insert, an area that is highly conserved in HCV. We speculate that the failure of the chimeric virus to adapt in marmosets might be due to a bottleneck that occurs at the time of infection of resistant animals, which may lead to a loss of fitness upon serial passage.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3