Affiliation:
1. Bacterial Toxins and Therapeutics Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
Abstract
ABSTRACT
Bacillus anthracis
lethal toxin (LT) produces symptoms of anthrax in mice and induces rapid lysis of macrophages derived from certain inbred strains. LT is comprised of a receptor binding component, protective antigen (PA), which delivers the enzymatic component, lethal factor (LF), into cells. We found that mouse macrophages were protected from toxin by the antitumor drug
cis
-diammineplatinum (II) dichloride (cisplatin). Cisplatin was shown to inhibit LT-mediated cleavage of cellular mitogen-activated protein kinases (MEKs) without inhibiting LF's in vitro proteolytic activity. Cisplatin-treated PA lost 100% of its ability to function in toxicity assays when paired with untreated LF, despite maintaining the ability to bind to cells. Cisplatin-treated PA was unable to form heptameric oligomers required for LF binding and translocation. The drug was shown to modify PA in a reversible noncovalent manner. Not surprisingly, cisplatin also blocked the actions of anthrax edema toxin and of LF-
Pseudomonas aeruginosa
exotoxin A fusion peptide (FP59), both of which require PA for translocation. Treatment of BALB/cJ mice or Fischer F344 rats with cisplatin at biologically relevant concentrations completely protected the animals from a coadministered lethal dose of LT. However, treatment with cisplatin 2 hours before or after animals received a lethal bolus of toxin did not protect them.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Pharmacology (medical),Pharmacology
Reference42 articles.
1. Appleton, T. G. 1999. Diammine and diammineplatinum complexes with non-sulfur containing amino acids and peptides, p. 363-376. In B. Lippert (ed.), Cisplatin: chemistry and biochemistry of a leading anticancer drug. John Wiley and Sons, New York, N.Y.
2. Arora, N., K. R. Klimpel, Y. Singh, and S. H. Leppla. 1992. Fusions of anthrax toxin lethal factor to the ADP-ribosylation domain of Pseudomonas exotoxin A are potent cytotoxins which are translocated to the cytosol of mammalian cells. J. Biol. Chem.267:15542-15548.
3. Arora, N., and S. H. Leppla. 1993. Residues 1-254 of anthrax toxin lethal factor are sufficient to cause cellular uptake of fused polypeptides. J. Biol. Chem.268:3334-3341.
4. Fusions of anthrax toxin lethal factor with shiga toxin and diphtheria toxin enzymatic domains are toxic to mammalian cells
5. Beall, F. A., and F. G. Dalldorf. 1966. The pathogenesis of the lethal effect of anthrax toxin in the rat. J. Infect. Dis.116:377-389.
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献