Evidence for Gal3p's Cytoplasmic Location and Gal80p's Dual Cytoplasmic-Nuclear Location Implicates New Mechanisms for Controlling Gal4p Activity in Saccharomyces cerevisiae

Author:

Peng Gang1,Hopper James E.12

Affiliation:

1. Department of Biochemistry and Molecular Biology 1 and

2. Intercollege Graduate Program in Genetics, 2 College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania 17033

Abstract

ABSTRACT Genetics and in vitro studies have shown that the direct interaction between Gal3p and Gal80p plays a central role in galactose-dependent Gal4p-mediated GAL gene expression in the yeast Saccharomyces cerevisiae . Precisely how Gal3p-Gal80p interaction effects induction is not clear. It has been assumed that Gal3p interacts with Gal80p in the nucleus upon galactose addition to release Gal80p inhibition of Gal4p. Although Gal80p has been shown to possess nuclear localization signal (NLS) peptides, the subcellular distribution of neither Gal80p nor Gal3p was previously determined. Here we report that Gal3p is located in the cytoplasm and apparently excluded from the nucleus. We show that Gal80p is located in both the cytoplasm and the nucleus. Converting Gal80p into a nucleus-localized protein (NLS-Gal80p) by exogenous NLS addition impairs GAL gene induction. The impaired induction can be partially suppressed by targeting Gal3p to the nucleus (NLS-Gal3p). We document a very rapid association between NLS-Gal3p and Gal80p in vivo in response to galactose, illustrating that the nuclear import of Gal80p is very rapid and efficient. We also demonstrate that nucleus-localized NLS-Gal80p can move out of the nucleus and shuttle between nuclei in yeast heterokaryons. These results are the first indication that the subcellular distribution dynamics of the Gal3 and Gal80 proteins play a role in regulating Gal4p-mediated GAL gene expression in vivo.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3