RhoB Alteration Is Necessary for Apoptotic and Antineoplastic Responses to Farnesyltransferase Inhibitors

Author:

Liu Ai-xue1,Du Wei12,Liu Jeh-Ping3,Jessell Thomas M.3,Prendergast George C.12

Affiliation:

1. The Wistar Institute, Philadelphia, 1 and

2. Glenolden Laboratory, DuPont Pharmaceuticals Company, Glenolden, 2 Pennsylvania, and

3. Department of Neurobiology, Columbia University, New York, New York3

Abstract

ABSTRACT Farnesyltransferase inhibitors (FTIs) are in clinical trials, but how they selectively inhibit malignant cell growth remains uncertain. One important player in this process appears to be RhoB, an endosomal Rho protein that regulates receptor trafficking. FTI treatment elicits a gain of the geranylgeranylated RhoB isoform (RhoB-GG) that occurs due to modification of RhoB by geranylgeranyltransferase I in drug-treated cells. Notably, this event is sufficient to mediate antineoplastic effects in murine models and human carcinoma cells. To further assess this gain-of-function mechanism and determine whether RhoB-GG has a necessary role in drug action, we examined the FTI response of murine fibroblasts that cannot express RhoB-GG due to homozygous deletion of the rhoB gene. Nullizygous (−/−) cells were susceptible to cotransformation by adenovirus E1A plus activated H-Ras but defective in their FTI response, despite complete inhibition of H-Ras prenylation. Actin cytoskeletal and phenotypic events were disrupted in −/− cells, implicating RhoB-GG in these effects. Interestingly, −/− cells were resistant to FTI-induced growth inhibition under anchorage-dependent but not anchorage-independent conditions, indicating that, while RhoB-GG is sufficient, it is not necessary for growth inhibition under all conditions. In contrast, −/− cells were resistant to FTI-induced apoptosis in vitro and in vivo. Significantly, the apoptotic defect of −/− cells compromised the antitumor efficacy of FTI in xenograft assays. This study offers genetic proof of the hypothesis that RhoB-GG is a crucial mediator of the antineoplastic effects of FTIs.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 148 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3