Multiple Signals Regulate GAL Transcription in Yeast

Author:

Rohde John R.1,Trinh Jennifer1,Sadowski Ivan1

Affiliation:

1. Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3

Abstract

ABSTRACT Gal4p activates transcription of the Saccharomyces GAL genes in response to galactose and is phosphorylated during interaction with the RNA polymerase II (Pol II) holoenzyme. One phosphorylation at S699 is necessary for full GAL induction and is mediated by Srb10p/CDK8 of the RNA Pol II holoenzyme mediator subcomplex. Gal4p S699 phosphorylation is necessary for sensitive response to inducer, and its requirement for GAL induction can be abrogated by high concentrations of galactose in strains expressing wild-type GAL2 and GAL3 . Gal4p S699 phosphorylation occurs independently of Gal3p and is responsible for the long-term adaptation response observed in gal3 yeast. SRB10 and GAL3 are shown to represent parallel mechanisms for GAL gene induction. These results demonstrate that Gal4p activity is controlled by two independent signals: one that acts through Gal3p-galactose and a second that is mediated by the holoenzyme-associated cyclin-dependent kinase Srb10p. Since Srb10p is regulated independently of galactose, our results suggest a function for CDK8 in coordinating responses to specific inducers with the environment through the phosphorylation of gene-specific activators.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3