Gene Expression Pattern in Caco-2 Cells following Rotavirus Infection

Author:

Cuadras Mariela A.1,Feigelstock Dino A.1,An Sungwhan1,Greenberg Harry B.123

Affiliation:

1. Department of Medicine

2. Department of Microbiology and Immunology

3. Stanford University School of Medicine, Stanford, California 94305, and the VA Palo Alto Health Care System, Palo Alto, California 94304

Abstract

ABSTRACT Rotaviruses are recognized as the leading cause of severe dehydrating diarrhea in infants and young children worldwide. Preventive and therapeutic strategies are urgently needed to fight this pathogen. In tissue culture and in vivo, rotavirus induces structural and functional alterations in the host cell. In order to better understand the molecular mechanisms involved in the events after rotavirus infection, we identified host cellular genes whose mRNA levels changed after infection. For this analysis, we used microarrays containing more than 38,000 human cDNAs to study the transcriptional response of the human intestinal cell line Caco-2 to rotavirus infection. We found that 508 genes were differentially regulated >2-fold at 16 h after rotavirus infection, and only one gene was similarly regulated at 1 h postinfection. Of these transcriptional changes, 73% corresponded to the upregulation of genes, with the majority of them occurring late, at 12 or more hours postinfection. Some of the regulated genes were classified according to known biological function and included genes encoding integral membrane proteins, interferon-regulated genes, transcriptional and translational regulators, and calcium metabolism-related genes. A new picture of global transcriptional regulation in the infected cell is presented and families of genes which may be involved in viral pathogenesis are discussed.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Reference62 articles.

1. Angel, J., M. A. Franco, H. B. Greenberg, and D. Bass. 1999. Lack of a role for type I and type II interferons in the resolution of rotavirus-induced diarrhea and infection in mice J. Interferon Cytokine Res 19 : 655-659.

2. Ball, J. M., P. Tian, C. Q. Zeng, A. P. Morris, and M. K. Estes. 1996. Age-dependent diarrhea induced by a rotaviral nonstructural glycoprotein Science 272 : 101-104.

3. Bass, D. M. 1997. Interferon gamma and interleukin 1, but not interferon alpha, inhibit rotavirus entry into human intestinal cell lines. Gastroenterology 113 : 81-89.

4. Bishop, R. F., G. P. Davidson, I. H. Holmes, and B. J. Ruck. 1973. Virus particles in epithelial cells of duodenal mucosa from children with acute non-bacterial gastroenteritis. Lancet ii : 1281-1283.

5. Rotavirus Infection Induces an Increase in Intracellular Calcium Concentration in Human Intestinal Epithelial Cells: Role in Microvillar Actin Alteration

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3