Amino Acid Transport and Metabolism in Mycobacteria: Cloning, Interruption, and Characterization of an l -Arginine/γ-Aminobutyric Acid Permease in Mycobacterium bovis BCG

Author:

Seth Anjali1,Connell Nancy D.1

Affiliation:

1. Department of Microbiology and Molecular Genetics and New Jersey Medical School National Tuberculosis Center, UMDNJ/New Jersey Medical School, Newark, New Jersey 17103

Abstract

ABSTRACT Genes encoding l -arginine biosynthetic and transport proteins have been shown in a number of pathogenic organisms to be important for metabolism within the host. In this study we describe the cloning of a gene (Rv0522) encoding an amino acid transporter from Mycobacterium bovis BCG and the effects of its deletion on l -arginine transport and metabolism. The Rv0522 gene of BCG was cloned from a cosmid library by using primers homologous to the rocE gene of Bacillus subtilis , a putative arginine transporter. A deletion mutant strain was constructed by homologous recombination with the Rv0522 gene interrupted by a selectable marker. The mutant strain was complemented with the wild-type gene in single copy. Transport analysis of these strains was conducted using 14 C-labeled substrates. Greatly reduced uptake of l -arginine and γ-aminobutyric acid (GABA) but not of lysine, ornithine, proline, or alanine was observed in the mutant strain compared to the wild type, grown in Middlebrook 7H9 medium. However, when the strains were starved for 24 h or incubated in a minimal salts medium containing 20 mM arginine (in which even the parent strain does not grow), l -[ 14 C]arginine uptake by the mutant but not the wild-type strain increased strongly. Exogenous l -arginine but not GABA, lysine, ornithine, or alanine was shown to be toxic at concentrations of 20 mM and above to wild-type cells growing in optimal carbon and nitrogen sources such as glycerol and ammonium. l -Arginine supplied in the form of dipeptides showed no toxicity at concentrations as high as 30 mM. Finally, the permease mutant strain showed no defect in survival in unactivated cultured murine macrophages compared with wild-type BCG.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3