DNase Induced After Infection of KB Cells by Herpes Simplex Virus Type 1 or Type 2 II. Characterization of an Associated Endonuclease Activity

Author:

Hoffmann Peter J.1,Cheng Yung-Chi1

Affiliation:

1. Department of Experimental Therapeutics and Grace Cancer Drug Center, Roswell Park Memorial Institute, New York State Department of Health, Buffalo, New York 14263

Abstract

Purified preparations of the “exonuclease” specified by herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) possess an endonuclease activity. The exonuclease and endonuclease activities copurify and cosediment in a sucrose density gradient. Endonuclease activity is only observed in the presence of a divalent cation, and Mg 2+ or Mn 2+ is equally effective as a cofactor with an optimal concentration of 2 mM. A slight amount of endonuclease activity is observed in the presence of Ca 2+ , whereas no activity occurs in the presence of Zn 2+ . In the presence of Mg 2+ , Ca 2+ and Zn 2+ are inhibitory. Comparison of exonuclease and endonuclease activity in the presence of various divalent cations revealed that, at concentrations of Mn 2+ greater than 1 mM, only endonuclease activity occurs whereas endonuclease and exonuclease activity occur at all concentrations of Mg 2+ . The endonuclease was affected by putrescine and spermidine to the same extent as the exonuclease activity, but in marked contrast the endonuclease was inhibited by a 10-fold-lower concentration of spermine compared to the exonuclease. The activity specified by HSV-1 and HSV-2 has very similar properties. HSV-1 and HSV-2 endonuclease cleave covalently closed circular DNA to yield, firstly, nicked circles and then linear DNA which is subsequently hydrolyzed to small oligonucleotides. Cleavage does not appear to be base sequence specific. Conversion of nicked circles to linear DNA and subsequent degradation of linear DNA occurs more rapidly in the presence of Mg 2+ than Mn 2+ presumably by virtue of the presence of the exonuclease activity. Nonsuperhelical covalently closed circular duplex DNA is cleaved by the endonucleases at a rate 60 times slower than the rate observed on the supercoiled form. These data indicate that the HSV-1 and HSV-2 endonuclease preferentially recognize single-stranded DNA regions.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3