Comparison of CcrM-dependent methylation in Caulobacter crescentus and Brucella abortus by nanopore sequencing

Author:

Campbell Maxwell1ORCID,Barton Ian Scott2,Roop R. Martin2ORCID,Chien Peter1ORCID

Affiliation:

1. Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA

2. Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, South Carolina, USA

Abstract

ABSTRACT Bacteria rely on DNA methylation for restriction-modification systems and epigenetic control of gene expression. Here, we use direct detection of methylated bases by nanopore sequencing to monitor global DNA methylation in Alphaproteobacteria, where use of this technique has not yet been reported. One representative of this order, Caulobacter crescentus , relies on DNA methylation to control cell cycle progression, but it is unclear whether other members of this order, such as Brucella abortus , depend on the same systems. We addressed these questions by first measuring CcrM-dependent DNA methylation in Caulobacter and showing excellent correlation between nanopore-based detection and previously published results. We then directly measure the impact of Lon-mediated CcrM degradation on the epigenome, verifying that loss of Lon results in pervasive methylation. We also show that the AlkB demethylase has no global impact on DNA methylation during normal growth. Next, we report on the global DNA methylation in B. abortus for the first time and find that CcrM-dependent methylation is reliant on Lon but impacts the two chromosomes differently. Finally, we explore the impact of the MucR transcription factor, known to compete with CcrM methylation, on the Brucella methylome and share the results with a publicly available visualization package. Our work demonstrates the utility of nanopore-based sequencing for epigenome measurements in Alphaproteobacteria and reveals new features of CcrM-dependent methylation in a zoonotic pathogen. IMPORTANCE DNA methylation plays an important role in bacteria, maintaining genome integrity and regulating gene expression. We used nanopore sequencing to directly measure methylated bases in Caulobacter crescentus and Brucella abortus . In Caulobacter , we showed that stabilization of the CcrM methyltransferase upon loss of the Lon protease results in prolific methylation and discovered that the putative methylase AlkB is unlikely to have a global physiological effect. We measured genome-wide methylation in Brucella for the first time, revealing a similar role for CcrM in cell-cycle methylation but a more complex regulation by the Lon protease than in Caulobacter. Finally, we show how the virulence factor MucR impacts DNA methylation patterns in Brucella .

Funder

HHS | NIH | National Institute of General Medical Sciences

U.S. Department of Agriculture

HHS | NIH | National Institute of Allergy and Infectious Diseases

Publisher

American Society for Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3