Abstract
RmI, a circular chimera made of the polyomavirus (Py) genome with an insertion of mouse DNA (Ins), effectively undergoes intramolecular recombination in normal mouse cells, as indicated by the conversion of cloned RmI (RmIc) into unit-length Py DNA in transfected cultures. To follow the fate of the cellular component of RmI after recombination, the origin of simian virus 40 (SV40) DNA was inserted into the Ins region of RmIc, generating a new molecular species designated SV-RmIc. The recombination of SV-RmIc in simian cells synthesizing SV40 large T antigen gave rise to a molecule containing the SV40 origin, the reciprocal of unit-length Py DNA. However, SV-RmIc failed to yield unit-length Py DNA in murine cells unless Py large T antigen was provided in trans. In murine cells synthesizing SV40 large T antigen, the only detectable product from SV-RmIc contained only Py sequences, but was heterogeneous in size. These results and others also reported here strongly suggest that Py large T antigen plays a direct role in the resolution of RmI in murine cells.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献