Identification and preliminary characterization of Treponema pallidum protein antigens expressed in Escherichia coli

Author:

Stamm L V,Kerner T C,Bankaitis V A,Bassford P J

Abstract

We have previously described the construction in Escherichia coli K-12 of a hybrid plasmid colony bank of Treponema pallidum (Nichols strain) genomic DNA. By screening a portion of this bank with an in situ immunoassay, we identified six E. coli clones that express T. pallidum antigens. In this study, the recombinant plasmids from each of these clones have been analyzed in E. coli maxicells and have been found to encode a number of proteins that are not of vector pBR322 origin and are, therefore, of treponemal origin. In each case, several of these proteins can be specifically precipitated from solubilized maxicell extracts by high-titer experimental rabbit syphilitic serum. Certain of these proteins are also precipitated by high-titer latent human syphilitic sera (HSS). The T. pallidum DNA inserts in these plasmids range in size from 6.2 to 14 kilobase pairs, and from the restriction patterns of the inserts and the protein profiles generated by each plasmid in maxicells, it is apparent that we have recovered a total of four unique clones from our colony bank. Recombinant plasmids pLVS3 and pLVS5 were of particular interest. Plasmid pLVS3 encodes three major protein antigens with molecular weights of 39,000, 35,000, and 25,000. These three proteins, which were not recognized by pooled normal human sera, were efficiently precipitated by most secondary HSS, latent HSS, and late HSS tested. These proteins were also precipitated, although somewhat inefficiently, by most primary HSS tested. Plasmid pLVS5 encodes a major protein antigen with a molecular weight of 32,000 and several minor protein antigens that, although efficiently precipitated by experimental rabbit syphilitic serum, were generally not recognized by the various HSS tested. Evidence is presented indicating that the protein antigens encoded by plasmids pLVS3 and pLVS5 are specific for pathogenic treponemal species. We have also demonstrated that immunoglobulin G antibodies directed against these protein antigens can be detected in rabbits experimentally infected with T. pallidum Nichols as early as 11 days postinfection.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Reference40 articles.

1. Surface-associated host proteins on virulent Treponema pallidum;Alderete J. F.;Infect. Immun.,1979

2. Surface characterization of virulent Treponema pallidum;Alderete J. F.;Infect. Immun.,1980

3. Analysis of serum IgG against Treponema pallidum protein antigens in experimentally infected rabbits;Alderete J. F.;Br. J. Vener. Dis.,1981

4. Molecular characterization of receptor binding proteins and immunogens of virulent Treponema pallidum;Baseman J. B.;J. Exp. Med.,1980

5. Purification of Treponema pallidum from infected rabbit tissue: resolution into two treponemal populations;Baseman J. B.;Infect. Immun.,1974

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3