Cellular Effects and Epistasis among Three Determinants of Adaptation in Experimental Populations of Saccharomyces cerevisiae

Author:

Parreiras Lucas S.1,Kohn Linda M.1,Anderson James B.1

Affiliation:

1. Department of Cell and Systems Biology, University of Toronto, 3359 Mississauga Road North, Mississauga, Ontario, Canada L5L 1C6

Abstract

ABSTRACT Epistatic interactions in which the phenotypic effect of an allele is conditional on its genetic background have been shown to play a central part in various evolutionary processes. In a previous study (J. B. Anderson et al., Curr. Biol. 20:1383-1388, 2010; J. R. Dettman, C. Sirjusingh, L. M. Kohn, and J. B. Anderson, Nature 447:585-588, 2007), beginning with a common ancestor, we identified three determinants of fitness as mutant alleles (each designated with the letter “ e ”) that arose in replicate Saccharomyces cerevisiae populations propagated in two different environments, a low-glucose and a high-salt environment. In a low-glucose environment, MDS3e and MKT1e interacted positively to confer a fitness advantage. Also, PMA1e from a high-salt environment interacted negatively with MKT1e in a low-glucose environment, an example of a Dobzhansky-Muller incompatibility that confers reproductive isolation. Here we showed that the negative interaction between PMA1e and MKT1e is mediated by alterations in intracellular pH, while the positive interaction between MDS3e and MKT1e is mediated by changes in gene expression affecting glucose transporter genes. We specifically addressed the evolutionary significance of the positive interaction by showing that the presence of the MDS3 mutation is a necessary condition for the spread and fixation of the new mutations at the identical site in MKT1 . The expected mutations in MKT1 rose to high frequencies in two of three experimental populations carrying MDS3e but not in any of three populations carrying the ancestral allele. These data show how positive and negative epistasis can contribute to adaptation and reproductive isolation.

Publisher

American Society for Microbiology

Subject

Molecular Biology,General Medicine,Microbiology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3