Genetic evidence for interaction of sigma A with two promoters in Bacillus subtilis

Author:

Kenney T J1,Moran C P1

Affiliation:

1. Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322.

Abstract

The specificity of promoter binding by RNA polymerase is governed by the sigma subunit. Recent studies, in which single-amino-acid substitutions in sigma factors have been found to suppress the effects of specific base pair substitutions in promoters, support the model that these sigma factors make sequence-specific contacts with nucleotides at the -10 and -35 regions of promoters. We found that single-amino-acid substitutions in the putative -35 region and -10 region recognition domains of sigma A specifically suppressed the effects of mutations in the -35 and -10 regions, respectively, of two promoters that are expressed in exponentially growing Bacillus subtilis. These mutations change the specificity of sigma A, the primary sigma factor in growing B. subtilis, and demonstrate that this sigma factor interacts with promoters in a manner similar to that of its homolog in Escherichia coli, sigma 70. These mutant derivatives of sigma A also provide a tool that may be useful for determining whether sigma A uses specific promoters in vivo.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 91 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The essential activities of the bacterial sigma factor;Canadian Journal of Microbiology;2017-02

2. RNA Polymerase and Transcription Factors;Bacillus subtilis and Other Gram-Positive Bacteria;2014-04-30

3. De Novo Pyrimidine Nucleotide Synthesis;Bacillus subtilis and Other Gram-Positive Bacteria;2014-04-30

4. Indirect read-out of the promoter DNA by RNA polymerase in the closed complex;Nucleic Acids Research;2012-10-31

5. Global Transcriptional Control by NsrR in Bacillus subtilis;Journal of Bacteriology;2012-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3