Removal of N-glycosylation sites of the yeast acid phosphatase severely affects protein folding

Author:

Riederer M A1,Hinnen A1

Affiliation:

1. Department of Biotechnology, Ciba-Geigy Ltd., Basel, Switzerland.

Abstract

The influence of N glycosylation on the production of yeast acid phosphatase was studied. A set of synthetic hypoglycosylation mutants was generated by oligonucleotide-directed mutagenesis of the 12 putative sequons (Asn-X-Ser/Thr). Derepression of the hypoglycosylation mutants and analysis of their molecular sizes showed that all 12 sequons of the wild-type acid phosphatase are glycosylated. Activity measurements in combination with pulse-chase experiments revealed that the specific activity was not impaired by the introduced amino acid exchanges. However, absence of N glycosylation severely affected protein folding. Protein folding was found to be the rate-limiting factor in acid phosphatase secretion, and improper folding resulted in irreversible retention of malfolded acid phosphatase in the endoplasmic reticulum. With a decreasing number of attached glycan chains, less active acid phosphatase was secreted. Efficiency of correct folding was shown to be temperature dependent; i.e., lower temperatures could compensate for the reduction in attached oligosaccharides. In addition, protein folding and stability were shown to depend on both the number and the position of the attached oligosaccharides. N glycosylation was found to occur in a process independent of secondary structures, and thus our data support the model of a cotranslocational mechanism of glycosylation.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3