Expression and operon structure of the sel genes of Escherichia coli and identification of a third selenium-containing formate dehydrogenase isoenzyme

Author:

Sawers G1,Heider J1,Zehelein E1,Böck A1

Affiliation:

1. Lehrstuhl für Mikrobiologie, Universität München, Germany.

Abstract

A detailed analysis of the expression of the sel genes, the products of which are necessary for the specific incorporation of selenium into macromolecules in Escherichia coli, showed that transcription was constitutive, being influenced neither by aerobiosis or anaerobiosis nor by the intracellular selenium concentration. The gene encoding the tRNA molecule which is specifically aminoacylated with selenocysteine (selC) proved to be monocistronic. In contrast, the other three sel genes (selA, -B, and -D) were shown to be constituents of two unlinked operons. The selA and selB genes formed one transcriptional unit (sel vector AB), while selD was shown to be the central gene in an operon including two other genes, the promoter distal of which (topB) encodes topoisomerase III. The promoter proximal gene (orf183) was sequenced and shown to encode a protein consisting of 183 amino acids (Mr, 20,059), the amino acid sequence of which revealed no similarity to any currently known protein. The products of the orf183 and topB genes were required neither for selenoprotein biosynthesis nor for selenation of tRNAs. selAB transcription was driven by a single, weak promoter; however, two major selD operon transcripts were identified. The longer initiated just upstream of the orf183 gene, whereas the 5' end of the other mapped in a 116-bp nontranslated region between orf183 and selD. Aerobic synthesis of all four sel gene products incited a reexamination of a weak 110-kDa selenopolypeptide which is produced under these conditions. The aerobic appearance of this 110-kDa selenopolypeptide was not a consequence of residual expression of the gene encoding the 110-kDa selenopolypeptide of the anaerobically inducible formate dehydrogenase N (FDHN) enzyme, as previously surmised, but rather resulted from the expression of a gene encoding a third, distinct selenopolypeptide in E. coli. A mutant strain no longer capable of synthesizing the 80- and 110-kDa selenopolypeptides of FDHH and FDHN, respectively, still synthesized this alternative 110-kDa selenopolypeptide which was present at equivalent levels in cells grown aerobically and anaerobically with nitrate. Furthermore, this strain exhibited a formate- and sel gene-dependent respiratory activity, indicating that it is probable that this selenopolypeptide constitutes a major component of the formate oxidase, an enzyme activity initially discovered in aerobically grown E. coli more than 30 years ago.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3