Studies of the Bradyrhizobium japonicum nodD1 promoter: a repeated structure for the nod box

Author:

Wang S P1,Stacey G1

Affiliation:

1. Center for Legume Research, University of Tennessee, Knoxville 37996-0845.

Abstract

Induction of nod genes in Rhizobium and Bradyrhizobium species is dependent on the presence of plant-produced flavonoids, the NodD protein, and the cis-acting nod box promoter sequence. Although the nodD (nodD1) gene in Rhizobium species is constitutively expressed, nodD1 expression in Bradyrhizobium japonicum is inducible by isoflavones in a manner similar to that of the nodYABC operon. A consensus nod box sequence is found 5' of the nodYABC operon, whereas a presumptive, nod box-like sequence is found 5' of the nodD1 gene. As an initial step toward examining the nodD1 promoter, the transcriptional start sites of the nodD1 and nodYABC operons were determined and found to be 44 and 28 bp, respectively, downstream of their respective nod box sequences. A series of deletions of the nodD1 promoter were constructed and fused to the lacZ gene. Analysis of the activity of these deletions clearly showed that the divergent nod box sequence was essential for nodD1 induction by isoflavones or soybean seed extract. The induction of nodD1 expression requires NodD1, as tested in B. japonicum and in a heterologous system, Agrobacterium tumefaciens. On the basis of these data, we analyzed the published nod box sequences and propose a new consensus sequence composed of paired 9-bp repeats. Analysis of the nodD1 nod box and synthetic constructs of the nocYABC nod box indicate that at least two 9-bp repeats are required for NodD1-mediated induction. Furthermore, insertions between the paired repeats of the nodYABC nod box suggest that orientation of the repeats on opposite faces of the DNA helix is essential for maximum nod gene expression.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3