Affiliation:
1. Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511.
Abstract
Many flagellar proteins are exported by a flagellum-specific export pathway. In an initial attempt to characterize the apparatus responsible for the process, we designed a simple assay to screen for mutants with export defects. Temperature-sensitive flagellar mutants of Salmonella typhimurium were grown at the permissive temperature (30 degrees C), shifted to the restrictive temperature (42 degrees C), and inspected in a light microscope. With the exception of switch mutants, they were fully motile. Next, cells grown at the permissive temperature had their flagellar filaments removed by shearing before the cells were shifted to the restrictive temperature. Most mutants were able to regrow filaments. However, flhA, fliH, fliI, and fliN mutants showed no or greatly reduced regrowth, suggesting that the corresponding gene products are involved in the process of flagellum-specific export. We describe here the sequences of fliH, fliI, and the adjacent gene, fliJ; they encode proteins with deduced molecular masses of 25,782, 49,208, and 17,302 Da, respectively. The deduced sequence of FliI shows significant similarity to the catalytic beta subunit of the bacterial F0F1 ATPase and to the catalytic subunits of vacuolar and archaebacterial ATPases; except for limited similarity in the motifs that constitute the nucleotide-binding or catalytic site, it appears unrelated to the E1E2 class of ATPases, to other proteins that mediate protein export, or to a variety of other ATP-utilizing enzymes. We hypothesize that FliI is either the catalytic subunit of a protein translocase for flagellum-specific export or a proton translocase involved in local circuits at the flagellum.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
198 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献