The cysP promoter of Salmonella typhimurium: characterization of two binding sites for CysB protein, studies of in vivo transcription initiation, and demonstration of the anti-inducer effects of thiosulfate

Author:

Hryniewicz M M1,Kredich N M1

Affiliation:

1. Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710.

Abstract

The cysPTWA operons of Escherichia coli and Salmonella typhimurium encode components of periplasmic transport systems for sulfate and thiosulfate and are regulated as part of the cysteine regulons. In vitro transcription initiation from the cysP promoter was shown to require both CysB protein and either O-acetyl-L-serine or N-acetyl-L-serine, which act as inducers, and was inhibited by the anti-inducer sulfide. Thiosulfate was found to be even more potent than sulfide as an anti-inducer. DNase I protection experiments showed two discrete binding sites for CysB protein in the presence of N-acetyl-L-serine. CBS-P1 is located between positions -85 and -41 relative to the major transcription start site, and CBS-P2 is located between positions -19 and +25. Without N-acetyl-L-serine, the CysB protein protected the region between positions -63 and -11, which was designated CBS-P3. In gel mobility shift assays, the mobility of CysB protein-cysP promoter complexes was increased by O-acetyl-L-serine, N-Acetyl-L-serine had no effect in gel shift experiments, presumably because its anionic charge results in its rapid removal from the complex during electrophoresis. Comparison of DNA fragments differing with respect to binding site position indicated that complexes with CysB protein contain DNA that is bent somewhere between CBS-P1 and CBS-P2 and that O-acetyl-L-serine decreases DNA bending. Binding studies with fragments containing either CBS-P2 alone, CBS-P1 alone, or the entire cysP promoter region suggest a model in which the complex of bent DNA observed in the absence of O-acetyl-L-serine contains a single CysB protein molecule bound to CBS-P3. At relatively low CysB protein concentrations, O-acetyl-L-serine would cause a single CysB protein molecule to bind tightly to CBS-P1, rather than to CBS-P3, thereby decreasing DNA bending and increasing complex electrophoretic mobility. At higher CysB protein concentrations, O-acetyl-L-serine would cause a second molecule to bind at CBS-P2, giving a more slowly migrating complex.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference53 articles.

1. Evidence for two functional gal promoters in intact Escherichia coli cells;Aiba H.;J. Biol. Chem.,1981

2. Bacterial periplasmic transport systems: structure, mechanism and evolution. Annu;Ames G. F.;Rev. Biochem.,1986

3. Linkage map of Escherichia coli K12, edition 8;Bachmann B. J.;Microbiol. Rev.,1990

4. Pleiotropy in a cysteine-requiring mutant of Salmonella typhimurium resulting from an altered protein-protein interaction;Becker M. A.;J. Biol. Chem.,1969

5. Regulation of the cysB gene expression in Escherichia coli;Bielinska A.;Acta Biochim. Pol.,1986

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3