In Vitro and In Vivo Antiviral Activity and Resistance Profile of the Hepatitis C Virus NS3/4A Protease Inhibitor ABT-450

Author:

Pilot-Matias Tami1,Tripathi Rakesh1,Cohen Daniel1,Gaultier Isabelle1,Dekhtyar Tatyana1,Lu Liangjun1,Reisch Thomas1,Irvin Michelle1,Hopkins Todd1,Pithawalla Ron1,Middleton Timothy1,Ng Teresa1,McDaniel Keith1,Or Yat Sun2,Menon Rajeev1,Kempf Dale1,Molla Akhteruzzaman1,Collins Christine1

Affiliation:

1. AbbVie, Inc., North Chicago, Illinois, USA

2. Enanta Pharmaceuticals, Watertown, Massachusetts, USA

Abstract

ABSTRACT The development of direct-acting antiviral agents is a promising therapeutic advance in the treatment of hepatitis C virus (HCV) infection. However, rapid emergence of drug resistance can limit efficacy and lead to cross-resistance among members of the same drug class. ABT-450 is an efficacious inhibitor of HCV NS3/4A protease, with 50% effective concentration values of 1.0, 0.21, 5.3, 19, 0.09, and 0.69 nM against stable HCV replicons with NS3 protease from genotypes 1a, 1b, 2a, 3a, 4a, and 6a, respectively. In vitro , the most common amino acid variants selected by ABT-450 in genotype 1 were located in NS3 at positions 155, 156, and 168, with the D168Y variant conferring the highest level of resistance to ABT-450 in both genotype 1a and 1b replicons (219- and 337-fold, respectively). In a 3-day monotherapy study with HCV genotype 1-infected patients, ABT-450 was coadministered with ritonavir, a cytochrome P450 3A4 inhibitor shown previously to markedly increase peak, trough, and overall drug exposures of ABT-450. A mean maximum HCV RNA decline of 4.02 log 10 was observed at the end of the 3-day dosing period across all doses. The most common variants selected in these patients were R155K and D168V in genotype 1a and D168V in genotype 1b. However, selection of resistant variants was significantly reduced at the highest ABT-450 dose compared to lower doses. These findings were informative for the subsequent evaluation of ABT-450 in combination with additional drug classes in clinical trials in HCV-infected patients. (Study M11-602 is registered at ClinicalTrials.gov under registration no. NCT01074008.)

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3