Sequences within the spacer region of yeast rRNA cistrons that stimulate 35S rRNA synthesis in vivo mediate RNA polymerase I-dependent promoter and terminator activities.

Author:

Mestel R,Yip M,Holland J P,Wang E,Kang J,Holland M J

Abstract

Sequences within the spacer region of yeast rRNA cistrons stimulate synthesis of the major 35S rRNA precursor in vivo 10- to 30-fold (E. A. Elion and J. R. Warner, Cell 39:663-673, 1984). Spacer sequences that mediate this stimulatory activity are located approximately 2.2 kilobases upstream from sequences that encode the 5' terminus of the 35S rRNA precursor. By utilizing a centromere-containing plasmid carrying a 35S rRNA minigene, a 160-base-pair region of spacer rDNA was identified by deletion mapping that is required for efficient stimulation of 35S rRNA synthesis in vivo. A 22-base-pair sequence, previously shown to support RNA polymerase I-dependent selective initiation of transcription in vitro, was located 15 base pairs upstream from the 3' boundary of the stimulatory region. A 77-base pair region of spacer DNA that mediates transcriptional terminator activity in vivo was identified immediately downstream from the 5' boundary of the stimulatory region. Deletion mutations extending downstream from the 5' boundary of the 160-base-pair stimulatory region simultaneously interfere with terminator activity and stimulation of 35S rRNA synthesis from the minigene. The terminator region supported termination of transcripts initiated by RNA polymerase I in vivo. The organization of sequences that support terminator and promoter activities within the 160-base-pair stimulatory region is similar to the organization of rDNA gene promoters in higher organisms. Possible mechanisms for spacer-sequence-dependent stimulation of yeast 35S rRNA synthesis in vivo are discussed.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3