Mutational Analysis of nocK and nocL in the Nocardicin A Producer Nocardia uniformis

Author:

Kelly Wendy L.1,Townsend Craig A.1

Affiliation:

1. Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland

Abstract

ABSTRACT The nocardicins are a family of monocyclic β-lactam antibiotics produced by the actinomycete Nocardia uniformis subsp. tsuyamanensis ATCC 21806. The most potent of this series is nocardicin A, containing a syn -configured oxime moiety, an uncommon feature in natural products. The nocardicin A biosynthetic gene cluster was recently identified and found to encode proteins in keeping with nocardicin A production, including the nocardicin N -oxygenase, NocL, in addition to genes of undetermined function, such as nocK , which bears similarities to a broad family of esterases. The latter was hypothesized to be involved in the formation of the critical β-lactam ring. While previously shown to effect oxidation of the 2′-amine of nocardicin C to provide nocardicin A, it was uncertain whether NocL was the only N-oxidizing enzyme required for nocardicin A biosynthesis. To further detail the role of NocL in nocardicin production in N. uniformis , and to examine the function of nocK , a method for the transformation of N. uniformis protoplasts to inactivate both nocK and nocL was developed and applied. A reliable protocol is reported to achieve both insertional disruption and in trans complementation in this strain. While the nocK mutant still produced nocardicin A at levels near that seen for wild-type N. uniformis , and therefore has no obvious role in nocardicin biosynthesis, the nocL disruptant failed to generate the oxime-containing metabolite. Nocardicin A production was restored in the nocL mutant upon in trans expression of the gene. Furthermore, the nocL mutant accumulated the biosynthetic intermediate nocardicin C, confirming its role as the sole oxime-forming enzyme required for production of nocardicin A.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3