An RNA Splicing Enhancer-Like Sequence Is a Component of a Splicing Inhibitor Element from Rous Sarcoma Virus

Author:

McNally Lisa M.1,McNally Mark T.1

Affiliation:

1. Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226

Abstract

ABSTRACT The accumulation in infected cells of large amounts of unspliced viral RNA for use as mRNA and genomic RNA is a hallmark of retrovirus replication. The negative regulator of splicing (NRS) is a long cis -acting RNA element in Rous sarcoma virus that contributes to unspliced RNA accumulation through splicing inhibition. One of two critical sequences located in the NRS 3′ region resembles a minor class 5′ splice site and is required for U11 small nuclear ribonucleoprotein (snRNP) binding to the NRS. The second is a purine-rich region in the 5′ half that interacts with the splicing factor SF2/ASF. In this study we investigated the possibility that this purine-rich region provides an RNA splicing enhancer function required for splicing inhibition. In vitro, the NRS acted as a potent, orientation-dependent enhancer of Drosophila doublesex pre-mRNA splicing, and enhancer activity mapped to the purine-rich domain. Analysis of a number of site-directed and deletion mutants indicated that enhancer activity was diffusely located throughout a 60-nucleotide area but only the activity associated with a short region previously shown to bind SF2/ASF correlated with efficient splicing inhibition. The significance of the enhancer activity to splicing inhibition was demonstrated by using chimeras in which two authentic enhancers (ASLV and FP) were substituted for the native NRS purine region. In each case, splicing inhibition in transfected cells was restored to levels approaching that observed for the NRS. The observation that a nonfunctional version of the FP enhancer (FPD) that does not bind SF2/ASF also fails to block splicing when paired with the NRS 3′ region supports the notion that SF2/ASF binding to the NRS is relevant, but other SR proteins may substitute if an appropriate binding site is supplied. Our results are consistent with a role for the purine region in facilitated snRNP binding to the NRS via SF2/ASF.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3