A Gene-Targeting Approach Identifies a Function for the First Intron in Expression of the α1(I) Collagen Gene

Author:

Hormuzdi Sheriar G.1,Penttinen Risto1,Jaenisch Rudolf2,Bornstein Paul13

Affiliation:

1. Departments of Biochemistry 1 and

2. The Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 021422

3. Medicine, 3 University of Washington, Seattle, Washington 98195, and

Abstract

ABSTRACT The role of the first intron of the Col1A1 gene in the regulation of type I collagen synthesis remains uncertain and controversial despite numerous studies that have made use of transgenic and transfection experiments. To examine the importance of the first intron in regulation of the gene, we have used the double-replacement method of gene targeting to introduce, by homologous recombination in embryonic stem (ES) cells, a mutated Col1A1 allele (Col-IntΔ). The Col-IntΔ allele contains a 1.3-kb deletion within intron I and is also marked by the introduction of a silent mutation that created an Xho I restriction site in exon 7. Targeted mice were generated from two independently derived ES cell clones. Mice carrying two copies of the mutated gene were born in the expected Mendelian ratio, developed normally, and showed no apparent abnormalities. We used heterozygous mice to determine whether expression of the mutated allele differs from that of the normal allele. For this purpose, we developed a reverse transcription-PCR assay which takes advantage of the Xho I polymorphism in exon 7. Our results indicate that in the skin, and in cultured cells derived from the skin, the intron plays little or no role in constitutive expression of collagen I. However, in the lungs of young mice, the mutated allele was expressed at about 75% of the level of the normal allele, and in the adult lung expression was decreased to less than 50%. These results were confirmed by RNase protection assays which demonstrated a two- to threefold decrease in Col1A1 mRNA in lungs of homozygous mutant mice. Surprisingly, in cultured cells derived from the lung, the mutated allele was expressed at a level similar to that of the wild-type allele. Our results also indicated an age-dependent requirement for the intact intron in expression of the Col1A1 gene in muscle. Since the intron is spliced normally, and since the mutant allele is expressed as well as the wild-type allele in the skin, reduced mRNA stability is unlikely to contribute to the reduction in transcript levels. We conclude that the first intron of the Col1A1 gene plays a tissue-specific and developmentally regulated role in transcriptional regulation of the gene. Our experiments demonstrate the utility of gene-targeting techniques that produce subtle mutations for studies of cis -acting elements in gene regulation.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3