Potato Leafroll Virus Binds to the Equatorial Domain of the Aphid Endosymbiotic GroEL Homolog

Author:

Hogenhout Saskia A.1,van der Wilk Frank1,Verbeek Martin1,Goldbach Rob W.2,van den Heuvel Johannes F. J. M.1

Affiliation:

1. Department of Virology, DLO Research Institute for Plant Protection (IPO-DLO), 6700 GW Wageningen,1 and

2. Department of Virology, Wageningen Agricultural University, 6709 PD Wageningen,2 The Netherlands

Abstract

ABSTRACT A GroEL homolog with a molecular mass of 60 kDa, produced by the primary endosymbiotic bacterium (a Buchnera sp.) of Myzus persicae and released into the hemolymph, has previously been shown to be a key protein in the transmission of potato leafroll virus (PLRV). Like other luteoviruses and pea enation mosaic virus, PLRV readily binds to extracellular Buchnera GroEL, and in vivo interference in this interaction coincides with reduced capsid integrity and loss of infectivity. To gain more knowledge of the nature of the association between PLRV and Buchnera GroEL, the groE operon of the primary endosymbiont of M. persicae (MpB groE ) and its flanking sequences were characterized and the PLRV-binding domain of Buchnera GroEL was identified by deletion mutant analysis. MpB GroEL has extensive sequence similarity (92%) with Escherichia coli GroEL and other members of the chaperonin-60 family. The genomic organization of the Buchnera groE operon is similar to that of the groE operon of E. coli except that a constitutive promoter sequence could not be identified; only the heat shock promoter was present. By a virus overlay assay of protein blots, it was shown that purified PLRV bound as efficiently to recombinant MpB GroEL (expressed in E. coli ) as it did to wild-type MpB GroEL. Mutational analysis of the gene encoding MpB GroEL revealed that the PLRV-binding site was located in the so-called equatorial domain and not in the apical domain which is generally involved in polypeptide binding and folding. Buchnera GroEL mutants lacking the entire equatorial domain or parts of it lost the ability to bind PLRV. The equatorial domain is made up of two regions at the N and C termini that are not contiguous in the amino acid sequence but are in spatial proximity after folding of the GroEL polypeptide. Both the N- and C-terminal regions of the equatorial domain were implicated in virus binding.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3