The Nitric Oxide-Responsive Regulator NsrR Controls ResDE-Dependent Gene Expression

Author:

Nakano Michiko M.1,Geng Hao1,Nakano Shunji1,Kobayashi Kazuo2

Affiliation:

1. Department of Environmental and Biomolecular Systems, OGI School of Science and Engineering, Oregon Health and Science University, Beaverton, Oregon 97006

2. Graduate School of Information Science, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara 630-0192, Japan

Abstract

ABSTRACT The ResD-ResE signal transduction system is essential for aerobic and anaerobic respiration in Bacillus subtilis . ResDE-dependent gene expression is induced by oxygen limitation, but full induction under anaerobic conditions requires nitrite or nitric oxide (NO). Here we report that NsrR (formerly YhdE) is responsible for the NO-dependent up-regulation of the ResDE regulon. The null mutation of nsrR led to aerobic derepression of hmp (flavohemoglobin gene) partly in a ResDE-independent manner. In addition to its negative role in aerobic hmp expression, NsrR plays an important role under anaerobic conditions for regulation of ResDE-controlled genes, including hmp . ResDE-dependent gene expression was increased by the nsrR mutation in the absence of NO, but the expression was decreased by the mutation when NO was present. Consequently, B. subtilis cells lacking NsrR no longer sense and respond to NO (and nitrite) to up-regulate the ResDE regulon. Exposure to NO did not significantly change the cellular concentration of NsrR, suggesting that NO likely modulates the activity of NsrR. NsrR is similar to the recently described nitrite- or NO-sensitive transcription repressors present in various bacteria. NsrR likely has an Fe-S cluster, and interaction of NO with the Fe-S center is proposed to modulate NsrR activity.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3