Extracellular Secretion of Overexpressed Glycosylphosphatidylinositol-Linked Cell Wall Protein Utr2/Crh2p as a Novel Protein Quality Control Mechanism in Saccharomyces cerevisiae

Author:

Miller Kelly A.1,DiDone Louis2,Krysan Damian J.12

Affiliation:

1. Departments of Microbiology/Immunology

2. Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642

Abstract

ABSTRACT Eukaryotic cells employ a variety of mechanisms to maintain protein quality control and homeostasis. Here we provide evidence that one such mechanism in Saccharomyces cerevisiae involves the regulated release of excess or misfolded proteins to the extracellular space. The overexpression of an epitope-tagged allele of the glycosylphosphatidylinositol (GPI)-linked cell wall protein Utr2/Crh2p (Utr2/Crh2-green fluorescent protein [GFP] or -hemagglutinin [HA]) causes endoplasmic reticulum (ER) stress and the secretion of Crh2-GFP/HA into the extracellular space. Secretion is dependent on two GPI-linked aspartyl proteases (Yps1p/2p) and components of the unfolded protein response (Ire1p and Hac1p) but is independent of ER-associated degradation (ERAD) components such as Hrd1p and Doa10p. Supporting the idea that this process represents a mechanism for protein quality control, the level of Crh2-HA is increased in strains lacking Bst1p, a protein required for the proteasomal degradation of GPI-linked proteins. Furthermore, secretion is dependent on Sec18p, indicating that it requires ER-to-Golgi trafficking, and accordingly, Crh2-HA accumulates in the ER in ire1 Δ and bst1 Δ mutants by cycloheximide chase experiments. Since a fraction of Utr2/Crh2-GFP properly localizes to the cell wall in an ire1 Δ mutant, extracellular secretion appears to occur through a pathway that is distinct from the normal GPI protein-trafficking pathway. Taken together, these data support a model in which the unfolded protein response (UPR)/yapsin-mediated extracellular release of overexpressed Utr2/Crh2-HA or -GFP is an alternative pathway for the removal of excess or misfolded secretory proteins functioning in parallel with proteasome-mediated degradation in S. cerevisiae . This model provides an explanation for the deleterious effects of Yps1/2p on the industrial production of some recombinant proteins in S. cerevisiae .

Publisher

American Society for Microbiology

Subject

Molecular Biology,General Medicine,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3