The Regulator of the Yeast Proline Utilization Pathway Is Differentially Phosphorylated in Response to the Quality of the Nitrogen Source

Author:

Huang Hoching L.1,Brandriss Marjorie C.1

Affiliation:

1. Department of Microbiology and Molecular Genetics, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, New Jersey 07103

Abstract

ABSTRACT The proline utilization pathway in Saccharomyces cerevisiae is regulated by the Put3p transcriptional activator in response to the presence of the inducer proline and the quality of the nitrogen source in the growth medium. Put3p is constitutively bound to the promoters of its target genes, PUT1 and PUT2 , under all conditions studied but activates transcription to the maximum extent only in the absence of rich nitrogen sources and in the presence of proline (i.e., when proline serves as the sole source of nitrogen). Changes in target gene expression therefore occur through changes in the activity of the DNA-bound regulator. In this report, we demonstrate by phosphatase treatment of immunoprecipitates of extracts metabolically labeled with 32 P or 35 S that Put3p is a phosphoprotein. Examination of Put3p isolated from cells grown on a variety of nitrogen sources showed that it was differentially phosphorylated as a function of the quality of the nitrogen source: the poorer the nitrogen source, the slower the gel migration of the phosphoforms. The presence of the inducer does not detectably alter the phosphorylation profile. Activator-defective and activator-constitutive Put3p mutants have been analyzed. One activator-defective mutant appears to be phosphorylated in a pattern similar to that of the wild type, thus separating its ability to be phosphorylated from its ability to activate transcription. Three activator-constitutive mutant proteins from cells grown on an ammonia-containing medium have a phosphorylation profile similar to that of the wild-type protein in cells grown on proline. These results demonstrate a correlation between the phosphorylation status of Put3p and its ability to activate its target genes and suggest that there are two signals, proline induction and quality of nitrogen source, impinging on Put3p that act synergistically for maximum expression of the proline utilization pathway.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Reference50 articles.

1. Proline-independent binding of PUT3 transcriptional activator protein detected by footprinting in vivo

2. Bisson L. F. Influence of nitrogen on yeast and fermentation of grapes Proceedings of the International Symposium on Nitrogen in Grapes and Wine. 1991 78 89 American Society for Enology and Viticulture Davis Calif

3. Interaction of the GATA factor Gln3p with the nitrogen regulator Ure2p in Saccharomyces cerevisiae

4. Evidence for positive regulation of proline utilization in Saccharomyces cerevisiae;Brandriss M. C.;Genetics,1987

5. Isolation and preliminary characterization of Saccharomyces cerevisiae proline auxotrophs

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3