Standardization of measurement of immunoglobulin-secreting cells in human peripheral circulation

Author:

Baqar S1,Nour El Din A A1,Scott D A1,Bourgeois A L1,Mourad A S1,Kleinosky M T1,Oplinger M J1,Murphy J R1

Affiliation:

1. Department of Infectious Diseases, Naval Medical Research Institute, Bethesda, Maryland, USA.

Abstract

A sensitive, and at times the most sensitive, measurement of human vaccine immunogenicity is enumeration of antibody-secreting cells (ASC) in peripheral blood. However, this assay, which is inherently capable of measurement of the absolute number of antigen-specific ASC, is not standardized. Thus, quantitative comparison of results between laboratories is not currently possible. To address this issue, isotype-specific ASC were enumerated from paired fresh and cryopreserved mononuclear cell (MNC) preparations from healthy adult volunteers resident in either the United States (US group) or Egypt (EG group). Analysis of fresh cells from US volunteers revealed mean numbers of ASC per 10(6) MNC of 617, 7,738, and 868 for immunoglobulin M (IgM), IgG, and IgA, respectively, whereas EG volunteers had 2,086, 7,580, and 1,677 ASC/10(6) MNC for the respective isotypes. Cryopreservation resulted in a slight reduction in group mean IgM, IgG, and IgA ASC (maximum reduction in group mean, 14%), but in no instance were results obtained with cryopreserved cells significantly lower than those obtained with fresh cells. To determine if cryopreservation affected the number of bacterial antigen-specific ASC detected, cells from a group of US adult volunteers who received a single oral dose of a mutated Escherichia coli heat-labile enterotoxin (LT(R192G)) were tested. There was no significant difference (P > 0.05) in the number of antigen-specific IgA or IgG ASC detected between fresh and cryopreserved MNC. The results support the views that ASC assays can be standardized to yield quantitative results and that the methodology can be changed to make the test more practical.

Publisher

American Society for Microbiology

Subject

Microbiology (medical),Clinical Biochemistry,Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3