Affiliation:
1. INRS-Santé, Université du Québec, Pointe-Claire, Québec, Canada H9R 1G6,1 and
2. Départment de Biochimie, Université Laval, Ste-Foy, Québec, Canada G1K 7P42
Abstract
ABSTRACTThe ability of the dehydrogenase and ring cleavage dioxygenase of the naphthalene degradation pathway to transform 3,4-dihydroxylated biphenyl metabolites was investigated. 1,2-Dihydro-1,2-dihydroxynaphthalene dehydrogenase was expressed as a histidine-tagged protein. The purified enzyme transformed 2,3-dihydro-2,3-dihydroxybiphenyl, 3,4-dihydro-3,4-dihydroxybiphenyl, and 3,4-dihydro-3,4-dihydroxy-2,2′,5,5′-tetrachlorobiphenyl to 2,3-dihydroxybiphenyl, 3,4-dihydroxybiphenyl (3,4-DHB), and 3,4-dihydroxy-2,2′,5,5′-tetrachlorobiphenyl (3,4-DH-2,2′,5,5′-TCB), respectively. Our data also suggested that purified 1,2-dihydroxynaphthalene dioxygenase catalyzed themetacleavage of 3,4-DHB in both the 2,3 and 4,5 positions. This enzyme cleaved 3,4-DH-2,2′,5,5′-TCB and 3,4-DHB at similar rates. These results demonstrate the utility of the naphthalene catabolic enzymes in expanding the ability of thebphpathway to degrade polychlorinated biphenyls.
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology