Effects on Gram-Negative and Gram-Positive Bacteria Mediated by 5-Aminolevulinic Acid and 5-Aminolevulinic Acid Derivatives

Author:

Fotinos Nicolas1,Convert Maruska2,Piffaretti Jean-Claude2,Gurny Robert1,Lange Norbert1

Affiliation:

1. Department of Pharmaceutics and Biopharmaceutics, School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, 30 Quai Ernest Ansermet, Geneva 1211, Switzerland

2. Institute of Microbiology, Via Mirasole 22A, Bellinzona 6500, Switzerland

Abstract

ABSTRACT Due mainly to the extensive use of antibiotics, the spread of multiresistant bacterial strains is one of the most worrying threats to public health. One strategy that can be used to overcome potential shortcomings might be the inactivation of these microorganisms by 5-aminolevulinic acid (5-ALA) or 5-ALA derivative-mediated photodynamic therapy (PDT). 5-ALA has no photoactive properties, but when it is given exogenously, it acts as a precursor of photosensitive porphyrins predominantly in tissues or organisms that are characterized by a high metabolic turnover, such as tumors, macrophages, and bacteria. However, the weak ability of 5-ALA to cross biological barriers has led to the introduction of more lipophilic derivatives, such as methyl aminolevulinate or hexyl aminolevulinate, which display improved capacities to reach the cytoplasm. Starting from the hypothesis that more lipophilic compounds carrying only a permanent positive charge under physiological conditions may more easily cross the bacterial multilayer barrier, we have tested the efficacies of some 5-ALA n -alkyl esters for the inactivation of bacteria. For this purpose, different bacterial strains were incubated with 5-ALA or its corresponding esters of different lipophilicities. Then, the bacteria were irradiated with light and the numbers of CFU post-PDT were counted and compared to those for the controls, which were kept in the dark. Furthermore, the total amount of accumulated porphyrins was quantified by high-pressure liquid chromatography analysis. In our studies, analysis of the bacterial extracts revealed the presence of all the porphyrins involved in heme biosynthesis, from uroporphyrin to protoporphyin IX. The efficacy of bacterial inactivation was a function of the total amount of porphyrins produced, independently of their nature. The 5-ALA methyl and butyl esters were the most effective compounds with respect to the photodynamic inactivation of bacteria. We observed significant differences in terms of the optimal drug concentration, bactericidal activities, and porphyrin production.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Cited by 78 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3