avnA, a gene encoding a cytochrome P-450 monooxygenase, is involved in the conversion of averantin to averufin in aflatoxin biosynthesis in Aspergillus parasiticus

Author:

Yu J1,Chang P K1,Cary J W1,Bhatnagar D1,Cleveland T E1

Affiliation:

1. Southern Regional Research Center, USDA Agricultural Research Service, New Orleans, Louisiana 70179, USA.

Abstract

Recent studies have shown that at least 17 genes involved in the aflatoxin biosynthetic pathway are clustered within a 75-kb DNA fragment in the genome of Aspergillus parasiticus. Several additional transcripts have also been mapped to this gene cluster. A gene, avnA (previously named ord-1), corresponding to one of the two transcripts identified earlier between the ver-1 and omtA genes on the gene cluster was sequenced. The nucleotide sequence of the avnA gene contains a coding region for a protein of 495 amino acids with a calculated molecular mass of 56.3 kDa. The gene consists of three exons and two introns. Disruption of the avnA gene in the wild-type aflatoxigenic A. parasiticus strain (SU1-N3) resulted in a nonaflatoxigenic mutant which accumulated a bright yellow pigment. Thin-layer chromatographic studies with six different solvent systems showed that the migration patterns of the accumulated metabolite were identical to those of averantin, a known aflatoxin precursor. Precursor feeding studies with this mutant showed that norsolorinic acid and averantin were not converted to aflatoxin whereas 5'-hydroxyaverantin, averufanin, averufin, versicolorin A. sterigmatocystin, and O-methylsterigmatocystin were converted to aflatoxins. Southern blot analysis of the wild-type strain and avnA-disrupted mutant strain indicated that the avnA gene was disrupted in the mutant strain. A search of the GenBank database for similarity indicated that the avnA gene encodes a cytochrome P-450-type monooxygenase, and it has been assigned to a new P-450 gene family named CYP60A1. We have therefore concluded that the avnA gene encodes a fungal cytochrome P-450-type enzyme which is involved in the conversion of averantin to averufin in the aflatoxin biosynthetic pathway in A. parasiticus.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Reference52 articles.

1. Incorporation of labelled compounds into aflatoxins;Adye J.;Biochim. Biophys. Acta,1964

2. Ausubel F. M. R. Brent R. E. Kingston D. D. Moore J. G. Seidman J. A. Smith and K. Struhl. 1987. Current protocols in molecular biology vol. 1. John Wiley & Sons Inc. New York.

3. Bhatnagar D. P. J. Cotty and T. E. Cleveland. 1993. Preharvest aflatoxin contamination: molecular strategies for its control p. 272-292. In A. M. Spanier H. Okai and M. Tamura (ed.) Food flavor and safety: molecular analysis and design. American Chemical Society Washington D.C.

4. Bhatnagar D. K. C. Ehrlich and T. E. Cleveland. 1992. Oxidation-reduction reactions in biosynthesis of secondary metabolites p. 255-286. In D. Bhatnagar E. B. Lillehoj and D. K. Arora (ed.) Handbook of applied mycology vol. 5. Mycotoxins in ecological systems. Marcel Dekker Inc. New York N.Y.

5. Purification and characterization of a methyltransferase from Aspergillus parasiticus SRRC 163 involved in aflatoxin biosynthetic pathway;Bhatnagar D.;Prep. Biochem.,1988

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3