Assimilation of single-stranded donor deoxyribonucleic acid fragments by nucleoids of competent cultures of Bacillus subtilis

Author:

van Randen J,Venema G

Abstract

Lysates containing folded chromosomes of competent Bacillus subtilis were prepared. The chromosomes were supercoiled, as indicated by the biphasic response of their sedimentation rates to increasing concentrations of ethidium bromide. Limited incubation of the lysates with increasing concentrations of ribonucleases resulted in a gradual decrease in the sedimentation velocity of the deoxyribonucleic acid (DNA) until finally a constant S value was reached. Incubation with sonicated, 4,5',8-trimethylpsoralen-monoadducted, denatured, homologous donor DNA molecules at 37 degrees C and concomitant irradiation with long-wave ultraviolet light of the nucleoid-containing lysates resulted in the formation of complexes of the donor DNA molecules and the recipient chromosomes. This complex formation was stimulated when nucleoids were previously (i) unfolded by ribonuclease incubation, (ii) (partially) relaxed by X irradiation, or (iii) subjected to both treatments. Monoadducts were not essential. On the other hand, the complex-forming capacity of recipient chromosomes previously cross-linked by 4,5',8-trimethylpsoralen diadducts was greatly reduced, suggesting that strand separation of the recipient molecule was involved in the formation of the complex. None of these effects has been observed when heterologous (Escherichia coli) donor DNA has been used. When the same kind of experiments were carried out at 70 degrees C, donor-recipient DNA complexes were also formed and required strand separation and homology similar to donor-recipient complex formation at 37 degrees C. However, in contrast to what was found at 37 degrees C, unfolding plus relaxation of the nucleoids, as well as the absence of monoadducts in the donor DNA fragments, resulted in a decrease in complex formation. On the basis of these results, we assume that superhelicity can promote the in vitro assimilation of single-stranded donor DNA fragments by nucleoids of competents B. subtilis cells at 70 degrees C, but that at 37 degrees C a different mechanism is involved.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference48 articles.

1. Enzymatic unwinding of DNA. EII. Mode of action of Escherichia coli DNA unwinding enzyme;Abdel-Monem MB;J. MoL Biol.,1977

2. The anatomy of the T5 bacteriophage DNA molecule;Abelson J.;J. Mol. Biol.,1966

3. Adams AL H. 1959. Bacteriophages. Interacience Publishers New York.

4. T4 bacteriophage gene 32: a structural protein in the replication and recombination of DNA;Alberta B. ML;Nature (London),1970

5. Arwert F. and G. Venema. 1973. Evidence for a noncovalently bonded intermediate in recombination during transformation of Bacilus subtilis p. 203-214. In L Archer (ed.) Bacterial transformation-1973. Academic Press Inc. London.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3