Affiliation:
1. Unité de Pharmacologie Cellulaire et Moléculaire, Université Catholique de Louvain, B-1200 Brussels, Belgium
Abstract
ABSTRACT
The accumulation and efflux kinetics of ciprofloxacin have been examined by using murine J774 macrophages. Accumulation (at equilibrium) was increased (three- to fourfold) (i) when cells were incubated with high extracellular drug concentrations (typically 200 mg/liter) as opposed to clinically meaningful concentrations (10 mg/liter or lower), (ii) during ATP- depletion and at acid pH, and (iii) during coincubation with probenecid, gemfibrozil and the preferential multidrug resistance-related protein (MRP) inhibitor MK571. All these conditions were also associated with a marked decrease in ciprofloxacin efflux (half-lives increased from <2 min in controls to up to 10 min). Monensin (a proton ionophore), verapamil, and the preferential P-glycoprotein (P-gp) inhibitor GF120918 had no or only minimal effect, while cyclosporin A, which is not specific for P-gp but also acts on MRP, had an intermediate effect. Short-term uptake studies showed that the influence of the modulators on the apparent drug influx was almost immediate (delay of ≤1 min). Cells made resistant to probenecid and showing a marked overexpression of MRP1 (by Western blot analysis and confocal microscopy) accumulated ciprofloxacin to almost the same extent as did control cells, but efflux was inhibited less by probenecid, gemfibrozil, and MK571. We conclude that ciprofloxacin is subject to constitutive efflux in J774 macrophages through the activity of an MRP-related transporter which is probably distinct from MRP1. We also suggest that the cellular accumulation of ciprofloxacin in wild-type cells is constitutively impaired at therapeutically meaningful concentrations.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Pharmacology (medical),Pharmacology
Reference55 articles.
1. Bera, T. K., C. Iavarone, V. Kumar, S. Lee, B. Lee, and I. Pastan. 2002. MRP9, an unusual truncated member of the ABC transporter superfamily, is highly expressed in breast cancer. Proc. Natl. Acad. Sci. USA99:6997-7002.
2. Boer, R., V. Gekeler, W. R. Ulrich, P. Zimmermann, W. Ise, A. Schodl, and S. Haas. 1996. Modulation of P-glycoprotein mediated drug accumulation in multidrug resistant CCRF VCR-1000 cells by chemosensitisers. Eur. J. Cancer32A:857-861.
3. Borst, P., R. Evers, M. Kool, and J. Wijnholds. 2000. A family of drug transporters: the multidrug resistance-associated proteins. J. Natl. Cancer Inst.92:1295-1302.
4. Cao, C., T. H. Steinberg, H. C. Neu, D. Cohen, S. B. Horwitz, S. Hickman, and S. C. Silverstein. 1993. Probenecid-resistant J774 cell expression of enhanced organic anion transport by a mechanism distinct from multidrug resistance. Infect. Agents Dis.2:193-200.
5. Cao, C. X., S. C. Silverstein, H. C. Neu, and T. H. Steinberg. 1992. J774 macrophages secrete antibiotics via organic anion transporters. J. Infect. Dis.165:322-328.
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献