Baculovirus Molecular Evolution via Gene Turnover and Recurrent Positive Selection of Key Genes

Author:

Hill Tom1ORCID,Unckless Robert L.1ORCID

Affiliation:

1. Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA

Abstract

ABSTRACT Hosts and viruses are locked in an evolutionary arms race. Hosts are constantly evolving to suppress virulence and replication, while viruses, which are reliant on host machinery for survival and reproduction, develop counterstrategies to escape this immune defense. Viruses must also adapt to novel conditions while establishing themselves in a host species. Both processes provide strong selection for viral adaptation. Understanding adaptive evolution in insect viruses can help us to better understand adaptive evolution in general and is important due to the use of these viruses as biocontrol agents and for protecting ecologically or economically important species from outbreaks. Here we examine the molecular evolution of baculoviruses and nudiviruses, a group of insect-infecting viruses with key roles in biocontrol. We looked for signatures of selection between genomes of baculoviruses infecting a range of species and within a population of baculoviruses. Both analyses found only a few strong signatures of positive selection, primarily in replication- and transcription-associated genes and several structural protein genes. In both analyses, we detected a conserved complex of genes, including the helicase gene, showing consistently high levels of adaptive evolution, suggesting that they may be key in antagonistic coevolution to escape host suppression. These genes are integral to the baculovirus life cycle and may be good focal genes for developing baculoviruses as effective biocontrol agents or for targeting baculoviruses infecting ecologically relevant species. Recombination and complex genomes make evolution in these double-stranded DNA viruses more efficient than that in smaller RNA viruses with error-prone replication, as seen via signatures of selection in specific genes within a population of baculoviruses. IMPORTANCE Most viral evolutionary studies focus on RNA viruses. While these viruses cause many human and animal diseases, such studies leave us with a lesser understanding of how DNA viruses adapt to hosts and how the host responds to these pathogens. In this paper, we focus on the evolution of baculoviruses, a group of insect-infecting DNA viruses, many of which have been used in biocontrol. We find that most of the genome is under purifying selection, with only a few key genes evolving adaptively. Our results provide a glimpse into how DNA viruses differ from RNA viruses in their evolutionary dynamics and identify genes that are key to DNA virus adaptation, improving our understanding of how this group of pathogens evolves.

Funder

HHS | National Institutes of Health

Austrian Academy of Sciences

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3