Affiliation:
1. Oncology Research Unit, The Children's Hospital at Westmead, Westmead, New South Wales 2145
2. Douglas Hanley Moir Laboratories, North Ryde, New South Wales 2113, Australia
3. Discipline of Paediatrics and Child Health, The University of Sydney, Sydney, New South Wales 2006
Abstract
ABSTRACT
The actin filament system is essential for many cellular functions, including shape, motility, cytokinesis, intracellular trafficking, and tissue organization. Tropomyosins (Tms) are rod-like components of most actin filaments that differentially affect their stability and flexibility. The Tm gene family consists of four genes, α
Tm
, β
Tm
, γ
Tm
(Tm5 NM, where “NM” indicates “nonmuscle”), and δ
Tm
(Tm4). Multiple isoforms of the Tm family are generated by alternative splicing of three of these genes, and their expression is highly regulated. Extensive spatial and temporal sorting of Tm isoforms into different cellular compartments has been shown to occur in several cell types. We have addressed the function of the low-molecular-weight Tms encoded by the γTm gene by eliminating the corresponding amino-terminal coding sequences from this gene. Heterozygous mice were generated, and subsequent intercrossing of the F
1
pups did not result in any viable homozygous knockouts. Genotype analysis of day 2.5 morulae also failed to detect any homozygous knockouts. We have failed in our attempts to delete the second allele and generate in vitro double-knockout cells, although 51 clones displayed homologous recombination back into the originally targeted locus. We therefore conclude that low-molecular-weight products from the γTm gene are essential for both embryonic development and cell survival.
Publisher
American Society for Microbiology
Subject
Cell Biology,Molecular Biology
Cited by
55 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献