Characterization of the promoter region of the Bacillus subtilis spoIIE operon

Author:

Guzmán P1,Westpheling J1,Youngman P1

Affiliation:

1. Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia 19104.

Abstract

Mutations that define the spoIIE locus of Bacillus subtilis block sporulation at an early stage and recently were shown to prevent the proteolytic processing of sigma E (sigma 29) into its active form, an event that is believed to control critical changes in gene expression during the second hour of development. By taking advantage of two Tn917-mediated insertional mutations in spoIIE, we have cloned DNA spanning the locus. Gene disruption experiments with subcloned fragments transferred to integrational vectors revealed that the locus consisted of a single transcription unit about 2.5 kilobase pairs in size. Transcriptional lacZ fusions were used to show that expression of this transcription unit initiated at 1.5 h after the end of log-phase growth and depended upon the products of all spo0 loci. Expression was directed by a single promoter whose position was determined by high-resolution S1 protection mapping. A deletion analysis of the promoter region was also carried out, with novel integrational vectors based on derivatives of coliphage M13. The results indicated that a region of DNA extending from 183 to 118 base pairs upstream from the start point of transcription was required for full activity of the spoIIE promoter. The presumptive RNA polymerase-binding region of the promoter exhibited striking similarity to the spoIIG promoter and featured perfect but unusually spaced -10 and -35 consensus sequences for sigma A (sigma 43)-associated RNA polymerase.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 85 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3