Pax5 and Linker Histone H1 Coordinate DNA Methylation and Histone Modifications in the 3′ Regulatory Region of the Immunoglobulin Heavy Chain Locus

Author:

Giambra Vincenzo1,Volpi Sabrina1,Emelyanov Alexander V.1,Pflugh David2,Bothwell Alfred L. M.2,Norio Paolo1,Fan Yuhong1,Ju Zhongliang1,Skoultchi Arthur I.1,Hardy Richard R.3,Frezza Domenico4,Birshtein Barbara K.1

Affiliation:

1. Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461

2. Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520

3. Division of Basic Science, Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, Pennsylvania 19111

4. Department of Biology Enrico Calef, University of Tor Vergata, Rome, Italy

Abstract

ABSTRACT The 3′ regulatory region (3′ RR) of the murine immunoglobulin heavy chain (IgH) locus contains multiple DNase I-hypersensitive (hs) sites. Proximal sites hs3A, hs1.2, and hs3B are located in an extensive palindromic region and together with hs4 are associated with enhancers involved in the expression and class switch recombination of IgH genes. Distal hs5, -6, and -7 sites located downstream of hs4 comprise a potential insulator for the IgH locus. In pro-B cells, hs4 to -7 are associated with marks of active chromatin, while hs3A, hs1.2, and hs3B are not. Our analysis of DNA methylation-sensitive restriction sites of the 3′ RR has revealed a similar modular pattern in pro-B cells; hs4 to -7 sites are unmethylated, while the palindromic region is methylated. This modular pattern of DNA methylation and histone modifications appears to be determined by at least two factors: the B-cell-specific transcription factor Pax5 and linker histone H1. In pre-B cells, a region beginning downstream of hs4 and extending into hs5 showed evidence of allele-specific demethylation associated with the expressed heavy chain allele. Palindromic enhancers become demethylated later in B-cell differentiation, in B and plasma cells.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3