Rapid Genoserotyping Tool for Classification of Salmonella Serovars

Author:

Franklin Kristyn1,Lingohr Erika J.1,Yoshida Catherine1,Anjum Muna2,Bodrossy Levente3,Clark Clifford G.4,Kropinski Andrew M.1,Karmali Mohamed A.1

Affiliation:

1. Public Health Agency of Canada, Laboratory for Foodborne Zoonoses, 110 Stone Road West, Guelph, ON, Canada N1G 3W4

2. Animal Health and Veterinary Laboratories Agency, New Haw, Addlestone, Surrey, United Kingdom

3. Department of Bioresources, Austrian Institute of Technology, A-2444 Seibersdorf, Austria

4. Enteric Diseases Program, Bacteriology and Enteric Diseases Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada R3E 3R2

Abstract

ABSTRACT We have developed a Salmonella genoserotyping array (SGSA) which rapidly generates an antigenic formula consistent with the White-Kauffmann-Le Minor scheme, currently the gold standard for Salmonella serotyping. A set of 287 strains representative of 133 Salmonella serovars was assembled to validate the array and to test the array probes for accuracy, specificity, and reproducibility. Initially, 76 known serovars were utilized to validate the specificity and repeatability of the array probes and their expected probe patterns. The SGSA generated the correct serovar designations for 100% of the known subspecies I serovars tested in the validation panel and an antigenic formula consistent with that of the White-Kauffmann-Le Minor scheme for 97% of all known serovars tested. Once validated, the SGSA was assessed against a blind panel of 100 Salmonella enterica subsp. I samples serotyped using traditional methods. In summary, the SGSA correctly identified all of the blind samples as representing Salmonella and successfully identified 92% of the antigens found within the unknown samples. Antigen- and serovar-specific probes, in combination with a pepT PCR for confirmation of S. enterica subsp. Enteritidis determinations, generated an antigenic formula and/or a serovar designation consistent with the White-Kauffmann-Le Minor scheme for 87% of unknown samples tested with the SGSA. Future experiments are planned to test the specificity of the array probes with other Salmonella serovars to demonstrate the versatility and utility of this array as a public health tool in the identification of Salmonella .

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3