Pharmacodynamics of Ampicillin-Sulbactam in an In Vitro Infection Model against Escherichia coli Strains with Various Levels of Resistance

Author:

Lamp Kenneth C.12,Vickers Mary K.2

Affiliation:

1. School of Pharmacy, University of Missouri—Kansas City,1 and the

2. Antibiotic Research Laboratory and Pharmacy Service, Veterans Affairs Medical Center,2 Kansas City, Missouri 64128

Abstract

ABSTRACT The activity of ampicillin-sulbactam against β-lactamase-producing Escherichia coli has been questioned. Therefore, in this study, the killing activity of ampicillin-sulbactam was investigated in an in vitro infection model which simulates human pharmacokinetics. One ampicillin-sensitive strain ( E. coli ATCC 25922, ampicillin-sulbactam MIC = 4/2 μg/ml) and three ampicillin-resistant TEM-1-producing strains with various levels of ampicillin-sulbactam resistance (EC11, MIC = 4/2 μg/ml; TIM2, MIC = 12/6 μg/ml; and GB85, MIC > 128/64 μg/ml) were studied. The E. coli strains were exposed to ampicillin-sulbactam at a starting inoculum of 6 to 7 log 10 CFU/ml. Ampicillin-sulbactam was infused over 30 min to simulate doses of 3 and 1.5 g every 6 h for 24 h. The 3-g ampicillin-sulbactam dose was bactericidal against E. coli ATCC 25922, EC11, and TIM2. The 1.5-g dose displayed bactericidal activity against ATCC 25922 and EC11 similar to that of the higher dose but failed to kill TIM2 due to inadequate time above the MIC and increased MICs over 24 h. GB85 was highly resistant and grew similarly to controls. Despite an MIC at 10 7 CFU/ml indicating resistance (20/10 μg/ml), TIM2 was killed by the 3-g dose of ampicillin-sulbactam. Current MIC breakpoints may not adequately portray the activity of ampicillin-sulbactam, considering both the activity in in vitro infection models and clinical data.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3