Tail-Anchored Inner Membrane Protein ElaB Increases Resistance to Stress While Reducing Persistence in Escherichia coli

Author:

Guo Yunxue1,Liu Xiaoxiao1,Li Baiyuan12,Yao Jianyun12,Wood Thomas K.34,Wang Xiaoxue1

Affiliation:

1. Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China

2. University of Chinese Academy of Sciences, Beijing, China

3. Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA

4. Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA

Abstract

ABSTRACT Host-associated bacteria, such as Escherichia coli , often encounter various host-related stresses, such as nutritional deprivation, oxidative stress, and temperature shifts. There is growing interest in searching for small endogenous proteins that mediate stress responses. Here, we characterized the small C-tail-anchored inner membrane protein ElaB in E. coli . ElaB belongs to a class of tail-anchored inner membrane proteins with a C-terminal transmembrane domain but lacking an N-terminal signal sequence for membrane targeting. Proteins from this family have been shown to play vital roles, such as in membrane trafficking and apoptosis, in eukaryotes; however, their role in prokaryotes is largely unexplored. Here, we found that the transcription of elaB is induced in the stationary phase in E. coli and stationary-phase sigma factor RpoS regulates elaB transcription by binding to the promoter of elaB . Moreover, ElaB protects cells against oxidative stress and heat shock stress. However, unlike membrane peptide toxins TisB and GhoT, ElaB does not lead to cell death, and the deletion of elaB greatly increases persister cell formation. Therefore, we demonstrate that disruption of C-tail-anchored inner membrane proteins can reduce stress resistance; it can also lead to deleterious effects, such as increased persistence, in E. coli . IMPORTANCE Escherichia coli synthesizes dozens of poorly understood small membrane proteins containing a predicted transmembrane domain. In this study, we characterized the function of the C-tail-anchored inner membrane protein ElaB in E. coli . ElaB increases resistance to oxidative stress and heat stress, while inactivation of ElaB leads to high persister cell formation. We also demonstrated that the transcription of elaB is under the direct regulation of stationary-phase sigma factor RpoS. Thus, our study reveals that small inner membrane proteins may have important cellular roles during the stress response.

Funder

National Science Foundation of China

National Science Foundation of Guangdong Province

China Postdoctoral Science Foundation funded project

DOD | Army Research Office

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3