Nucleus-encoded histone H1-like proteins are associated with kinetoplast DNA in the trypanosomatid Crithidia fasciculata

Author:

Xu C W1,Hines J C1,Engel M L1,Russell D G1,Ray D S1

Affiliation:

1. Molecular Biology Institute, University of California, Los Angeles 90095-1570, USA.

Abstract

Kinetoplast DNA (kDNA), the mitochondrial DNA of trypanosomatids, consists of thousands of minicircles and 20 to 30 maxicircles catenated into a single large network and exists in the cell as a highly organized compact disc structure. To investigate the role of kinetoplast-associated proteins in organizing and condensing kDNA networks into this disc structure, we have cloned three genes encoding kinetoplast-associated proteins. The KAP2, KAP3, and KAP4 genes encode proteins p18, p17, and p16, respectively. These proteins are small basic proteins rich in lysine and alanine residues and contain 9-amino-acid cleavable presequences. Proteins p17 and p18 are closely related to each other, with 48% identical residues and carboxyl tails containing almost exclusively lysine, alanine, and serine or threonine residues. These proteins have been expressed as Met-His6-tagged recombinant proteins and purified by metal chelate chromatography. Each of the recombinant proteins is capable of compacting kDNA networks in vitro and was shown to bind preferentially to a specific fragment of minicircle DNA. Expression of each of these proteins in an Escherichia coli mutant lacking the HU protein rescued a defect in chromosome condensation and segregation in the mutant cells and restored a near-normal morphological appearance. Proteins p16, p17, and p18 have been localized within the cell by immunofluorescence methods and appear to be present throughout the kDNA. Electron-microscopic immunolocalization of p16 shows that p16 is present both within the kDNA disc and in the mitochondrial matrix at opposite edges of the kDNA disc. Our results suggest that nucleus-encoded H1-like proteins may be involved in the organization and segregation of kDNA networks in trypanosomatids.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3